Респираторная поддержка пациентов с COVID – 19

Осмонов Батыр Рашидович

Заведующий кафедрой внутренних болезней Международного медицинского университета

Врач пульмонолог Научно – учебно – лечебный медицинский центр КГМА им. И.К. Ахунбаева.

Эмилов Берик Эмилович Завуч кафедры внутренних болезней Международного медицинского университета

Врач пульмонолог Медицинский центр - Prime clinic.

Данная обзорная статья описывает специфические аспекты респираторной помощи, пациентам с тяжелой степенью COVID-19 к которым относятся: высокопоточная и стандартная оксигенатерапия, неинвазивная вентиляция легких (НИВЛ) и введение лекарственных средств через небулайзер.

Цели оксигенотерапии - Всемирная организация здравоохранения (ВОЗ) предлагает титровать кислород до целевого периферического насыщения крови кислородом (SpO2) ≥ 90 процентов. Для большинства крайне-тяжелых больных, если это возможно, рекомендована минимально возможная фракция вдыхаемого кислорода (FiO2), необходимую для достижения целевого уровня оксигенации (целевой уровень SpO2 91 - 96 процентов) [1,3]. Однако некоторые пациенты могут нуждаться в более низкой дозе кислорода (например, пациенты с сопутствующей острой гиперкапнической дыхательной недостаточностью при хронической обструктивной болезни легких [ХОБЛ]), или другие пациенты, которые могут нуждаться в более высокой дозе кислорода (например, беременные). [4,5]

Стандартная оксигенотерапия - для пациентов с COVID-19 проводится с помощью системы через носовую канюлю (т.е. до 6 л / мин). Хотя степень аэрозолизации микроорганизмов при низких скоростях потока неизвестна, но многие ученые предполагают, что она минимальна.

Высокопоточную оксигенотерапию можно применять, используя простую лицевую маску, маску Вентури или бесклапанную маску (скорость потока 10-20 л / мин). Но некоторые эксперты предположили что, пациенты к которым подача кислорода осуществлялась через носовые канюли и маски (например, во время транспортировки) по мере увеличения потока кислорода, возрастал и риск рассеивания вируса, что увеличивает загрязнение окружающей среды для персонала, хотя это считается только теорией и данных подтверждающих это нет.

Рис.№1 Маска «Вентури»

Рис.№2 Бесклапанная маска

Пациенты с высокими потребностями в кислороде - по мере прогрессирования заболевания и ухудшения состояния пациента возрастает и потребность в увеличении скорости подачи кислорода. На данный момент для пациентов без COVID-19 имеется два варианта решения проблемы: высокопоточная оксигенотерапия (ВПОТ) или начало неинвазивной вентиляции легких (НИВЛ). Тем не менее, у пациентов с COVID-19 это решение является спорным и подлежит продолжению обсуждения [40,41]. Несмотря на это противоречие, оба способа использовались в мировой практике по-разному. В ретроспективных исследованиях показатели использования ВПОТ когортных варьировались от 14% до 63%, в то время как от 11% до 56% пациенты получали НИВЛ [5,6,7]. Тем не менее, нет данных, описывающих, были ли эти методы успешными и на сколько они снизили необходимость применения инвазивной вентиляции легких (ИВЛ).

Выбор метода (неинвазивная или инвазивная вентиляция легких)

Рис.№3 ВПОТ Рис.№4 НИВЛ

Решение начать неинвазивные методы как ВПОТ или НИВЛ, должно быть принято путем учета отрицательных и положительных эффектов для пациента, риска воздействия на медицинский персонал и наилучшего использования ресурсов и выбранный подход следует пересматривать по мере появления новых данных. Во всем мире ведется разработка новых клинических, междисциплинарных подходов, который включает команду пульмонологов и других специалистов, чтобы облегчить выбор метода помощи тяжелым пациентам. Пациентов с COVID-19, у которых прогрессирует острая дыхательная недостаточность, предпочтительно необходимо обеспечить высокопоточной кислородотерапией. оксигенотерапией, нежели обычной Предполагается, неинвазивные методы необходимо использовать избирательно, и не переходить непосредственно к интубации пациентов (например, если пациент молод и без сопутствующих заболеваний). С другой стороны, некоторые пациенты нуждаются в ранней интубации а не ВПОТ (например, пожилой пациент с нарушениями сознания, сопутствующими заболеваниями и несколькими факторами риска прогрессирования).

На сегодняшний день многие эксперты рекомендуют избегать обоих методов (т. е. переходить к ранней интубации, если при скорости оксигенотерапии 6 л / мин и более сохраняется гипоксемия или тахипноэ). Это обусловлено повышенным риском аэрозолизации и высокой вероятностью того, что у пациента в конечном итоге быстро разавьется слабость дыхательной мускулатуры и потребность в искусственной вентиляции легких (в течение одного-трех дней). Однако использование этого метода в качестве абсолютного правила может привести к избытку ненужных интубаций и создать

чрезмерную нагрузку устройствам при повышении заболеваемости. Кроме того, это особенно проблематично для пациентов с не подтвержденным диагнозом (например, в ожидании результата ПЦР), пациентов с потребностью в НИВЛ, пациентов с хронической дыхательной недостаточностью и пациентов со статусом «не интубировать», которым рекомендована терапия с ВПОТ или НИВЛ. В конечном счете, эти рекомендации могут меняться со временем в зависимости от загруженности пациентов с COVID-19 в регионе.

Высокопоточная оксигенотерапия через носовую канюлю или неинвазивная вентиляция легких - среди неинвазивных методов более предпочтительна ВПОТчНК. Большее предпочтение ВПОТ основано на ограниченных и противоречивых данных, которые в целом, описывают ВПОТ в сравнении с НИВЛ у пациентов с острой дыхательной недостаточностью, не связанной с COVID-19, детали которой приведены отдельно в статье [3,8,9,10]. Кроме того, ограниченные данные свидетельствуют о высокой частоте неудач НИВ у пациентов с респираторным синдромом на Ближнем Востоке (MERS) [11] и другими причинами острого респираторного дистресс-синдрома (ARDS) [12,13]. Тем не менее, НИВЛ доказала свою эффективность и может быть целесообразной и полезной у пациентов с острой гиперкапнической дыхательной недостаточностью обусловленной обострением хронического обструктивного заболевания легких (AECOPD), у пациентов с острым кардиогенным отеком легких и пациентов с нарушением дыхания во время сна (например, синдром обструктивного апноэ сна или синдром ожирения-гиповентиляции). [14,15,16-24]

Мониторинг и меры предосторожности для неинвазивных методов вентиляции.

Если назначается ВПОТчНК или НИВЛ, необходим пристальный уход и постоянный мониторинг газов артериальной крови через каждые 1-2 часа для обеспечения эффективности и безопасности вентиляции (например, частый кашель может быть не «безопасным»). Так же некоторые эксперты, считают что ВПОТчНК (или НИВЛ), более эффективно проводить в положении лежа на животе. Ограниченные данные из историй болезни у пациентов без COVID-19 с острым респираторным дистресс-синдромом свидетельствуют о целесообразности данной методики и улучшении оксигенации у некоторых пациентов [25,26,27].

ВПОТчНК и НИВЛ считаются процедурами с генерированием аэрозоля. Таким образом, при использовании ВПОТчНК и НИВЛ в дополнение к стандартным мерам предосторожности следует отметить повышенную опасность передачи инфекции через

воздух (т.е. необходима комната для изоляции от инфекций, передающихся по воздуху [также известной как комната отрицательного давления].

- ВПОТчНК не рекомендуется дополнительно надевать хирургическую маску или маску N95 на пациента во время ВПОТчНК, когда медицинские работники находятся в комнате, но эффективность этой практики неизвестна [3]. Дополнительные меры предосторожности для ВПОТчНК, которые могут снизить риск, включают в себя использование самого низкого, но эффективного потока (к напримеру 20 л / мин и 0,4 FiO2). Так же во время ВПОТчНК следует избегать вдыхания лекарств или газов (эпопростенола, бронхолитических средств из оксида азота).
- НИВЛ если инициируется НИВЛ, предпочтительнее использовать полно-лицевую маску, а не носовую или рото-назальную маску, чтобы минимизировать дисперсию частиц. Маска должна иметь хорошее уплотнение и не иметь клапана или порта для предотвращения удушья. Многими исследователями было предложено использовать шлем для НИВЛ при перевозке пациентов с COVID-19 [45]. Тем не менее, опыт работы с этим способом перевозки ограничен. Если используется НИВЛ, схема с двумя контурами и фильтром на выдохе на аппарате НИВЛ может снизить дисперсию по сравнению со схемой с одноконтурным подключением на переносных устройствах, хотя данных для поддержки именно этого метода недостаточно. Также рекомендуется начинать терапию с непрерывным положительным давлением в дыхательных путях (СРАР), используя в начале самое низкое давление (от 5 до 10 см.вод.ст).

Существует очень мало данных, касающихся аэрозолизации воздуха во время ВПОТчНК и НИВ. В проведенных исследованиях с имитацией работы нормального легкого рассеивание воздуха во время выдоха увеличивалось с увеличением потока ВПОТчНК с 65 мм (при 10 л / мин) до 172 мм (при 60 л / мин) в основном вдоль сагиттальной плоскости (то есть над ноздрями) [28]. Подобные расстояния были обнаружены при использовании СРАР терапии через носовые подушки (до 332 мм при СРАР терапии (подача давления 20 см.вод.ст). Однако при использовании СРАР через ороназальную маску с хорошей герметизацией не было отмечено значительной утечки (рисунок №5 и рисунок №6). Утечка воздуха увеличилась, когда соединения на любом устройстве были ослаблены. Дисперсия, так же уменьшалась, когда симулятор имитировал поврежденное легкое.

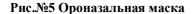


Рис.№6 Полно – лицевая маска

Введение лекарственных средств через небулайзер (пациенты самостоятельным дыханием) - Небулайзеры напрямую связаны с аэрозолизацией и поэтому потенциально увеличивают риск передачи SARS-CoV-2. У пациентов с подозрением или документированным COVID-19 распыляемая бронходилятационная терапия должна назначаться только для лечения острого бронхоспазма (приступ бронхиальной астмы или обострение хронической обструктивной болезни легких [ХОБЛ]). В противном случае следует избегать распыляемой терапии, особенно при назначении без четкой доказательной базы; однако некоторые применения (например, гипертонический раствор при муковисцидозе) могут потребоваться индивидуально. Дозированный аэрозольный ингалятор (ДАИ) с дистанционными устройствами следует использовать вместо распылителей для лечения хронических состояний (например, для лечения астмы или лечения ХОБЛ). Пациенты могут использовать свои собственные ДАИ, если в больнице их нет.

Рис.№7 Небулайзерная терапия

Рис.№8 Дозированный аэрозольный ингалятор (ДАИ)

Если используется небулайзерная терапия, пациенты должны находиться в комнате для изоляции от инфекций, передающихся воздушно-капельным путем, а медицинский персонал должен использовать меры предосторожности с соответствующими средствами индивидуальной защиты (СИЗ); это включает в себя маску N95 с защитными очками и

защитной маской для лица или эквивалентной ей (например, респиратор [PAPR]), а также перчатки и халат. Весь незадействованный персонал должен покинуть комнату во время распыления. Некоторые эксперты также предлагают не возвращаться в комнату в течение двух-трех часов после работы небулайзера. [29]